Quantum-Infused Neuro-Symbolic AI: A Novel Paradigm for Explainable Deep Learning

Authors

  • Dr. Kim Shanu

Abstract

The fusion of quantum computing with neuro-symbolic AI presents a transformative approach to achieving interpretability in deep learning models. This paper introduces Quantum-Infused Neuro-Symbolic AI (QINSAI), a novel framework that integrates quantum-enhanced probabilistic reasoning with deep neural networks. By leveraging quantum entanglement and superposition principles, QINSAI enhances model generalization and transparency while reducing computational complexity. Experimental results on benchmark datasets demonstrate superior accuracy and explainability compared to classical AI methods. The study outlines potential applications in healthcare diagnostics, autonomous systems, and financial modeling, paving the way for next-generation interpretable AI.

References

Mettikolla, P. (2023). Familial Hypertrophic Cardiomyopathy and Sustainable Healthcare: Genetic Insights, Clinical Implications, and Future Therapeutic Strategies for Global Health. International Journal of Sustainable Development Through AI, ML and IoT, 2(2), 1-25.

Mettikolla, P., Balammal, G., & Meena, D. (2022). The effect of sun light exposure on prediabetic patients in tamil nadu population. International Journal of Pharmaceutical Research and Life Sciences, 10(2), 30-35.

Mettikolla, P., & Umasankar, K. (2019). Epidemiological analysis of extended-spectrum β-lactamase-producing uropathogenic bacteria. International Journal of Novel Trends in Pharmaceutical Sciences, 9(4), 75-82.

Dr. Prasad Mettikolla, Dr. T. Sunil Kumar Reddy, & Dr. G. Balammal. (2024). EXPLORING COX-1 AND COX-2 INHIBITION POTENTIAL OF AMBERBOA DIVARICATA AERIAL PARTS THROUGH IN-SILICO AND IN-VITRO STUDIES. Journal of Population Therapeutics and Clinical Pharmacology, 31(11), 292-298.

Dr. A. Saravana Kumar Dr. Prasad Mettikolla.(2014). IN VITRO ANTIOXIDANT ACTIVITY ASSESSMENT OF CAPPARIS ZEYLANICA FLOWERS. International Journal of Phytopharmacology, 5(6), 496-501.

Dr. R. Gandhimathi Dr. Prasad Mettikolla.(2015). EVALUATION OF ANTINOCICEPTIVE EFFECTS OF MELIA AZEDARACH LEAVES. International Journal of Pharmacy, 5(2), 104-108.

G. Sangeetha Dr. Prasad Mettikolla.(2016). ASSESSMENT OF IN VITRO ANTI-DIABETIC PROPERTIES OF CATUNAREGAM SPINOSA EXTRACTS. International Journal of Pharmacy Practice & Drug Research, 6(2), 76-81.

Remala, R., Mudunuru, K. R., Gami, S. J., & Nagarajan, S. K. S. (2024). Optimizing Data Management Strategies: Analyzing Snowflake and DynamoDB for SQL and NoSQL. Journal Homepage: http://www. ijmra. us, 14(8).

Gami, S. J., & Jain, S. N. (2024). Integrating IoT Data Streams with Machine Learning for Predictive Maintenance in Industrial Systems. International Journal of Sustainable Development Through AI, ML and IoT, 3(1), 1-16.

Gami, S. J., & Batra, I. (2024). Leveraging Big Data Analytics for Enhanced Decision-Making in Business Intelligence. International Journal of Sustainable Development Through AI, ML and IoT, 3(1), 1-17.

Gami, S. J., Dhamodharan, B., Dutta, P. K., Gupta, V., & Whig, P. (2024). Data Science for Personalized Nutrition Harnessing Big Data for Tailored Dietary Recommendations. In Nutrition Controversies and Advances in Autoimmune Disease (pp. 606-630). IGI Global.

Gami, S. J., Sharma, M., Bhatia, A. B., Bhatia, B., & Whig, P. (2024). Artificial Intelligence for Dietary Management: Transforming Nutrition Through Intelligent Systems. In Nutrition Controversies and Advances in Autoimmune Disease (pp. 276-307). IGI Global.

Nagarajan, S. K. S., Remala, R., Mudunuru, K. R., & Gami, S. J. Automated Validation Framework in Machine Learning Operations for Consistent Data Processing.

Mudunuru, K. R., Remala, R., & Nagarajan, S. K. S. Leveraging IoT and Data Analytics in Logistics: Optimized Routing, Safety, and Resource Planning.

Nagarajan, S. K. S., Remala, R., Mudunuru, K. R., & Gami, S. J. Automated Validation Framework in Machine Learning Operations for Consistent Data Processing.

Sundararamaiah, M., Nagarajan, S. K. S., Remala, R., & Mudunuru, K. R. (2024). Crafting a High-Performance Real-Time Data Lake with Flink and Iceberg.

Raju, M. K., Rajesh, R., Kumar, T. J., & Guravaiah, K. (2024, June). Ensuring Data Integrity: A Strategic Approach to Reconciliation in Data Migration Projects. In 2024 15th International Conference on Computing Communication and Networking Technologies (ICCCNT) (pp. 1-8). IEEE.

Remala, R., Marupaka, D., & Mudunuru, K. R. (2024). Beyond Volume: Enhancing Data Quality in Big Data Analytics through Frameworks and Metrics.

Remala, R., Marupaka, D., & Mudunuru, K. R. (2024). Beyond Volume: Enhancing Data Quality in Big Data Analytics through Frameworks and Metrics.

Mudunuru, K. R., Remala, R., & Nagarajan, S. K. S. (2024). AI-Driven Data Analytics Unveiling Sales Insights from Demographics and Beyond.

Published

2025-01-01

How to Cite

Shanu, D. K. (2025). Quantum-Infused Neuro-Symbolic AI: A Novel Paradigm for Explainable Deep Learning. German Journal of Advanced Research , 7(7). Retrieved from https://journals.mljce.in/index.php/GJAR/article/view/14

Issue

Section

Articles